Foundation for Success

Unified International
Mathematics Olympiad

UNIFIED INTERNATIONAL MATHEMATICS OLYMPIAD

```
CLASS - }
Question Paper Code : UM9274
```

KEY

1	2	3	4	5	6	7	8	9	10
D	C	A	C	A	C	A	C	B	C
11	12	13	14	15	16	17	18	19	20
C	C	D	B	B	D	C	D	C	A
21	22	23	24	25	26	27	28	29	30
C	A	C	D	D	C	A	C	A	D
31	32	33	34	35	36	37	38	39	40
$\mathrm{~A}, \mathrm{~B}$	$\mathrm{~B}, \mathrm{D}$	$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$	B, D	$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$	B	D	D	B	A
41	42	43	44	45	46	47	48	49	50
B	C	B	C	A	B	A	B	C	C

EXPLANATIONS

MATHEMATICS - 1 (MCQ)

1. (D) Let $x=\mathrm{n}^{2}, \mathrm{n} \geq 0$
then $(n+1)^{2}=n^{2}+2 n+1$
$=x+2 \sqrt{x}+1$
2. (C) $\angle \mathrm{B}=90^{\circ} \Rightarrow \angle \mathrm{D}=90^{\circ}$ and $\angle \mathrm{A}=\angle \mathrm{C}=90^{\circ}$
$\therefore \quad \mathrm{ABCD}$ is a rectangle.
3. (A) Side of the first square $=(2 x-1) \mathrm{m}$
\Rightarrow Area $=(2 x-1)^{2} \mathrm{~m}^{2}$

Side of the second square $=(5 x+4) \mathrm{m}$
\Rightarrow Area $=(5 x+4)^{2} \mathrm{~m}^{2}$
According to the problem,
$9(2 x-1)^{2}=(5 x+4)^{2}$
$\Rightarrow[3(2 x-1)]^{2}-(5 x+4)^{2}=0$
$\Rightarrow[3(2 x-1)+5 x+4]$
$[3(2 x-1)-5 x-4]=0$
$\Rightarrow(6 x-3+5 x+4)(6 x-3-5 x-4)=0$
$\Rightarrow(11 x+1)(x-7)=0$
$\Rightarrow x=\frac{-1}{11}$ or 7
Dimensions of the plots cannot be negative.

Hence $x=7 \Rightarrow 2 x-1=2(7)-1=13 \mathrm{~m}$
$5 x+4=5(7)+4=35+4=39 \mathrm{~m}$
4. (C) Four numbers are in proportion if First \times Fourth $=$ Second \times Third

Let ' x be added to each of the given numbers to make the numbers proportionate.

Then,
$(5+x)(27+x)=(9+x)(17+x)$
$\Rightarrow 135+32 x+x^{2}=153+26 x+x^{2}$
$\Rightarrow 32 x-26 x=153-135$
$\Rightarrow 6 x=18$
$\Rightarrow x=3$
5. (A) Let the length of the side of the smaller square be ' x ' m . Then its area is $x^{2} \mathrm{sq}$. m .
\therefore The length of the side of the larger square $=(x+4) \mathrm{m}$
\Rightarrow Its area $=(x+4)^{2}$ sq. m
$=x^{2}+8 x+16$ sq. m
Given that the sum of their areas is 208 sq. m .
$\Rightarrow x^{2}+x^{2}+8 x+16=208$
$\Rightarrow 2 x^{2}+8 x+16=208$
$\Rightarrow x^{2}+4 x+8-104=0$
$\Rightarrow x^{2}+4 x-96=0$
$\Rightarrow x^{2}+12 x-8 x-96=0$
$\Rightarrow x(x+12)-8(x+12)=0$
$\Rightarrow x=-12$ or 8
Since the side of a square cannot be negative, the side of the smaller square is 8 m .
$\therefore \quad$ The side of the larger square is 12 m .
6. (C) $P\left(1+\frac{11}{100}\right)^{2}-P-\frac{P \times 11 \times 2}{100}=₹ 363$
$P\left(\frac{111}{100}\right)^{2}-P-\frac{11 P}{50}=₹ 363$
$\frac{12321 \times P}{10,000}-P-\frac{11 \mathrm{P}}{50}=₹ 363$
$\frac{12321 \mathrm{P}-10,000 \mathrm{P}-2200 \mathrm{P}}{10,000}=₹ 363$
$\frac{121 \mathrm{P}}{10,000}=₹ 363$
$\mathrm{P}=₹ 30,000$
7. (A) $27^{64}=\left(3^{3}\right)^{64}=3^{192}$
$9^{100}=\left(3^{2}\right)^{100}=3^{200}$
$81^{49}=\left(3^{4}\right)^{49}=3^{196}$
$3^{198}=3^{198}$
$\therefore \quad 9^{100}$ is the greatest
8. (C) There are 21 consonants among 26 alphabet.
$\therefore \quad$ Probability of consonant $=\frac{21}{26}$
9. (B) $\Rightarrow a=\frac{1}{a}$

Number $=$ its reciprocal
$\Rightarrow 1,-1$
$1+\frac{1}{1}=2$
$-1+\frac{1}{-1}=-2$
10. (C) $\sqrt[3]{49} \times \sqrt[3]{-448}$
$=\sqrt[3]{(49) \times(-448)}$
$=\sqrt[3]{49 \times(-7)(64)}$
$=\sqrt[3]{(-343)(64)}=\sqrt[3]{(-7)^{3}\left(4^{3}\right)}$
$=-28$
11. (C) $\left(x-\frac{1}{x}\right)\left(x+\frac{1}{x}\right)\left(x^{2}+\frac{1}{x^{2}}\right)\left(x^{4}+\frac{1}{x^{4}}\right)$
$=\left(x^{2}-\frac{1}{x^{2}}\right)\left(x^{2}+\frac{1}{x^{2}}\right)\left(x^{4}+\frac{1}{x^{4}}\right)$
$=\left[\left(x^{2}\right)^{2}-\left(\frac{1}{x^{2}}\right)^{2}\right]\left(x^{4}+\frac{1}{x^{4}}\right)$
$=\left(x^{4}\right)^{2}-\left(\frac{1}{x^{4}}\right)^{2}$
$=x^{8}-\frac{1}{x^{8}}$
12. (C) Option ' C ' is true.
13. (D) Volume each small metalic cube $=a^{3}=$ $(2 \mathrm{~cm})^{3}=8 \mathrm{~cm}^{3}$
Let ' n ' cubes dropped in the tank
$\therefore \quad$ Volume of ' n ' cubes $=$ Volume of risen water

$$
\begin{aligned}
& \mathrm{n} \times 8 \mathrm{~cm}^{3}=8 \times 5 \times 4 \mathrm{~cm}^{3} \\
& \mathrm{n}=\frac{8 \times 20 \mathrm{~cm}^{3}}{8 \mathrm{~cm}^{3}}=20
\end{aligned}
$$

14. (B) $\frac{d \mathrm{e} \times \not \subset \not \subset}{a b b \times \not \subset d}=\frac{5 \times \not 2}{3 \times A_{2}}$

$$
\frac{e}{a}=\frac{5}{6}
$$

15. (B)
$\frac{a+2 \sqrt{a b}+b}{\sqrt{a}+\sqrt{b}}=\frac{(\sqrt{a})^{2}+2 \sqrt{a} \times \sqrt{b}+(\sqrt{b})^{2}}{(\sqrt{a}+\sqrt{b})}$
$=\frac{(\sqrt{a}+\sqrt{b})^{2}}{(\sqrt{a}+\sqrt{b})}$
$=(\sqrt{a}+\sqrt{b})$
16. (D) $\sqrt{32.5^{2}+18.5^{2}-17.5^{2}-31.5^{2}}$

$$
=\sqrt{(32.5)^{2}-(31.5)^{2}+(18.5)^{2}-(17.5)^{2}}
$$

$$
=\sqrt{(32.5+31.5)(32.5-31.5)+(18.5+17.5)(18.5-17.5)}
$$

$=\sqrt{64(1)+36(1)}=\sqrt{100}$
= 10
17. (C) $x^{2}+x-2=x^{2}+2 x-x-2$
$=x(x+2)-1(x+2)=(x+2)(x-1)$
$x^{2}-x-6=x^{2}-3 x+2 x-6$
$=x(x-3)+2(x-3)=(x-3)(x+2)$
$x^{2}-4 x+3=x^{2}-3 x-x+3$
$=x(x-3)-1(x-3)=(x-3)(x-1)$
$\therefore \sqrt{\left(x^{2}+x-2\right)\left(x^{2}-x-6\right)\left(x^{2}-4 x+3\right)}$
$=\sqrt{(x+2)(x-1)(x-3)(x+2)(x-3)(x-1)}$
$=\sqrt{(x+2)^{2}(x-1)^{2}(x-3)^{2}}$
$=(x-1)(x+2)(x-3)$
18. (D) Here $\mathrm{p}-10^{\circ}+\mathrm{p}-5^{\circ}+\mathrm{p}-15^{\circ}+\mathrm{p}-30^{\circ}$
$=180^{\circ}$
$\Rightarrow \mathrm{p}=\frac{240^{\circ}}{4}=60^{\circ}$
19. (C) $4\left(x^{2}+10 x+25\right)-\left(4 x^{2}+4 x+1\right)$
$=3 \mathrm{x}-15+180$
$4 \mathrm{x}^{2}+40 \mathrm{x}+100-4 \mathrm{x}^{2}-4 \mathrm{x}-1$
$=3 \mathrm{x}+165$
$36 x+99=3 x+165$
$33 x=66$
$x=2$
20. (A) $(2 p-3 q)\left(4 p^{2}+6 p q+9 q^{2}\right)+(2 p+3 q)$ $\left(4 p^{2}-6 p q+9 q^{2}\right)$
$=8 p^{3}+12 p^{2} q+18 p q^{2}$

$$
-12 p^{2} q-18 p q^{2}-27 q^{3}+8 p^{3}-12 p^{2} q+
$$

$$
18 p q^{2}+12 p^{2} q-18 p q^{2}+27 q^{5}=16 p^{3}
$$

(OR) use $\left(a^{3}-b^{3}\right)+\left(a^{3}+b^{3}\right)=2 a^{3}$.
21. (C) $x+y=P(x+y+z)$
$y+z=P(x+y+z)$
$z+x=P(x+y+z)$
$\therefore \mathrm{x}+\mathrm{y}+\mathrm{y}+\mathrm{z}+\mathrm{z}+\mathrm{x}=3 \mathrm{P}(\mathrm{x}+\mathrm{y}+\mathrm{z})$
$2(x+y+z)=3 P(x+y+z)$
$P=\frac{2}{3}$
22. (A) Length $=4 \mathrm{x} \&$ breadth $=3 \mathrm{x}$
$\therefore 12 \mathrm{x}^{2}=1728$
$x^{2}=144$
$\mathrm{x}=12$
$\therefore \mathrm{l}=48 \mathrm{mts} \& \mathrm{~b}=36 \mathrm{mts}$
$\mathrm{P}=2(\mathrm{l}+\mathrm{b})=168$
Total cost of fencing $=168 \mathrm{~m} \times$ ₹ 2.5
= ₹ 420
23. (C) Let speed of steamer be xKMPH

Let the distance be ' d ' KM
Given $\frac{d}{x+2}=4$
$d=4(x+2)=4 x+8 \rightarrow(1)$
Given $\frac{d}{x-2}=5$
$d=5 x-10$
from (1) \& (2) $4 x+8=5 x-10$
Speed of steamer (x) $=18 \mathrm{KMPH}$
24. (D) $1^{3}+12^{3}=10^{3}+9^{3}$ ie Both are equal to 1729.
$\therefore \sqrt{x}=3$
$\mathrm{x}=9$
25. (D) Given $\mathrm{xy}=45$ \& $\mathrm{x}-\mathrm{y}=4$
squaring on both sides
$\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{yx}=16$
$x^{2}+y^{2}-90=16$
$x^{2}+y^{2}=106$
26. (C) Let the price of each article be ' x ' number of articles sold be y then orignal sales amount = xy

New sales amount
$=x \frac{(80)}{100} \times \frac{180}{100} y=\frac{36 x y}{25}$
Increased sales =
$=\frac{36 x y}{25}-x y=\frac{11 x y}{25}$
Increased sales percentage
$=\frac{\left(\frac{11 x y}{25}\right)}{x y y} \times 100^{4}=44 \%$
27. (A) Given I:b:h $=3: 2: 1=3 \mathrm{x}: 2 \mathrm{x}: \mathrm{x}$

Given TSA $=88 \mathrm{~cm}^{2}$
$2\left(6 \mathrm{x}^{2}+2 \mathrm{x}^{2}+3 \mathrm{x}^{2}\right)=88 \mathrm{~cm}^{2}$
$22 \mathrm{x}^{2}=88 \mathrm{~cm}^{2}$
$\mathrm{x}^{2}=4$
$\mathrm{x}=2$
LSA $=2 h(1+b)=2(2)[6+4]$
$=4 \times 10=40 \mathrm{~cm}^{2}$
28. (C) Sum of length of edges $=12 \mathrm{a}$
$12 \times 4 \mathrm{~cm}=48 \mathrm{~cm}$
29. (A) Area of rectangle

$$
\begin{aligned}
& =l b=(3 p+5 q)(5 p-7 q) \\
& =15 p^{2}-21 p q+25 p q-35 q^{2} \\
& =15 p^{2}+4 p q-35 q^{2}
\end{aligned}
$$

30. (D) $\frac{\sqrt{72} \times \sqrt{363} \times \sqrt{175}}{\sqrt{32} \times \sqrt{147} \times \sqrt{252}}$
$=\frac{\sqrt{6 \times 6 \times 2} \times \sqrt{11 \times 11 \times 3} \times \sqrt{5 \times 5 \times 7}}{\sqrt{4 \times 4 \times 2} \times \sqrt{7 \times 7 \times 3} \times \sqrt{6 \times 6 \times 7}}$
$=\frac{6 \sqrt{2} \times 11 \sqrt{3} \times 5 \sqrt{7}}{4 \sqrt{2} \times 7 \sqrt{3} \times 6 \sqrt{7}}$
$=\frac{55}{28}$

MATHEMATICS - 2 (MAQ)

31. (A, B) If a perfect square has ' n ' digit its square root may have $\frac{n}{2}$ (or) $\frac{n+1}{2}$ digits.
32. (B, D) $\left(3^{x}\right)^{2}-10 \times 3^{x}+9=0$
$\left(3^{x}\right)^{2}-9 \times 3^{x}-3^{x}+9=0$
$3^{x}\left(3^{x}-9\right)-1\left(3^{x}-9\right)=0$
$\left(3^{x}-9\right)\left(3^{x}-1\right)=0$
$3^{x}-9=0 \quad$ (or) $\quad 3^{x}-1=0$
$3^{x}=9$
$3^{x}-1$
$3^{x}-3^{2}$
$3^{x}-3^{0}$
$x=2$
$x=0$
33. (A, B, C, D)

If $\sqrt{x y}=10$, then (A) $x=20 \& y=5$ (or)
$x=50 \& y=2$,
$x=100 \& y=1$
$x=25 \& y=4$
34. (B, D) $x^{2}+2 x-15=x^{2}+5 x-3 x-15$

$$
=x(x+5)-3(x+5)
$$

$$
=(x+5)(x-3)
$$

$$
\left(x^{2}-2 x-35\right)=x^{2}-7 x+5 x-35
$$

$$
=x(x-7)+5(x-7)
$$

$$
=(x-7)(x+5)
$$

$$
(x+5) \quad\left(x^{2}+2 x-15\right),\left(x^{2}-2 x-35\right)
$$

$$
(x-3),(x-7)
$$

LCM of $\left(x^{2}+2 x-150\right.$ and $\left(x^{2}-2 x-\right.$ 35) $=(x+5)(x-3)(x-7)$
$=(x-3)(x+5)(x-7)$
$=(x-3)\left(x^{2}-2 x-35\right)$
(or)
$(x-7)(x+5)(x-3)$
$(x-7)\left(x^{2}+2 x-15\right)$
35. (A, B, C, D)
$\left(2 x^{2}+x\right)^{2}-9\left(2 x^{2}+x\right)+18=\left(2 x^{2}+x\right)^{2}-$
$6\left(2 x^{2}+x\right)-3\left(2 x^{2}+x\right)+18$
$=\left(2 x^{2}+x\right)\left[2 x^{2}+x-6\right]-3\left(2 x^{2}+x-6\right)$
$=\left(2 x^{2}+x-6\right)\left(2 x^{2}+x-3\right)$
$=\left(2 x^{2}+4 x-3 x-6\right)\left(2 x^{2}+3 x-2 x-3\right)$
$=[2 x(x+2)-3(x+2)][x(2 x+3)-1(2 x+3)]$
$=(x+2)(2 x-3)(2 x+3)(x-1)$
$(x+2),(2 x-3),(2 x+3) \&(x-1)$ are coprimes and factors of the given expression.
$\therefore \quad$ Their product also factors of the given expression
$\therefore \quad(2 x-3)(2 x+3)=\left(4 x^{2}-9\right)$ and $(x+2)$ $(x-1)=x^{2}-x+2 x-2=x^{2}+x-2$ (or)
$\left(2 x^{2}+x-3\right)$ is a factor of the given expression.
$(2 x-3)(x-1)=2 x^{2}-2 x-3 x+3$
$=\left(2 x^{2}-5 x+3\right)$ is also a factor of the given expression.

REASONING

36. (B)

37. (D)
$45,42,39,36,33,30,27,24,21,18,15,12,9,6,3$

38. (B) The letter ' T ' faces the base of the cube.
39. (A)

40. (B) In the first column $25=(17-12)^{2}$ and second column $4=(13-11)^{2}$, therefore $(19-16)^{2}$ is 9 .
41. (C) Rakesh is to the north east of Kareena.

KAREENA
HONEY
43. (B) $\left.\left.\begin{array}{l}\text { CARROM } \\ \text { BZQQNL }\end{array}\right\}-1 \begin{array}{l}\text { HOUSE } \\ \text { GNTRD }\end{array}\right\}-1$
44. (C) $8^{3}=512=512 \div 2=256$

$$
10^{3}=1000=1000 \div 2=500
$$

45. (A) Except in option (A), in all other groups there is a gap of one letter as in the original alphabet between second and fourth letters.

CRITICAL THINKING

46. (B) When pulleys are used together in the way as shown in pulley B, they reduce the amount of force needed to lift weight or a load.
47. (A) Giridhar and his wife $\rightarrow 2$ members 3 sons and their wives $\rightarrow 6$ members ' 2 ' sons have two childrens and ' 1 ' son has 3 childrens $\rightarrow 7$ childrens.

1 unmarried daughter $\rightarrow 1$
daughter and her son $\rightarrow 2$
old aunt and son-in-law $\rightarrow 2$
$2+6+7+1+2+2 \rightarrow 20$ members
48. (B) Floors are polished on Thursday.
49. (C) All Violinist are instrumentatlists. All instrumentalists are musicians. Then the relationship is correctly represented in option (C).
50. (C) Squares move from the top left to the middle, then to the bottom right corner with each turn. Unshaded squares appear in every third turn. Triangle appears with every alternate turn.

Therefore, the black square and unshaded square should both be in the middle, with no triangle.

